237 research outputs found

    Polymer- and Hybrid-Based Biomaterials for Interstitial, Connective, Vascular, Nerve, Visceral and Musculoskeletal Tissue Engineering

    Get PDF
    In this review, materials based on polymers and hybrids possessing both organic and inorganic contents for repairing or facilitating cell growth in tissue engineering are discussed. Pure polymer based biomaterials are predominantly used to target soft tissues. Stipulated by possibilities of tuning the composition and concentration of their inorganic content, hybrid materials allow to mimic properties of various types of harder tissues. That leads to the concept of “one-matches-all” referring to materials possessing the same polymeric base, but different inorganic content to enable tissue growth and repair, proliferation of cells, and the formation of the ECM (extra cellular matrix). Furthermore, adding drug delivery carriers to coatings and scaffolds designed with such materials brings additional functionality by encapsulating active molecules, antibacterial agents, and growth factors. We discuss here materials and methods of their assembly from a general perspective together with their applications in various tissue engineering sub-areas: interstitial, connective, vascular, nervous, visceral and musculoskeletal tissues. The overall aims of this review are two-fold: (a) to describe the needs and opportunities in the field of bio-medicine, which should be useful for material scientists, and (b) to present capabilities and resources available in the area of materials, which should be of interest for biologists and medical doctors.</jats:p

    Bio-interfaces: at the junction of material science and biology

    Get PDF

    Gold nanodome-patterned microchips for intracellular surface-enhanced Raman spectroscopy

    Get PDF
    While top-down substrates for surface-enhanced Raman spectroscopy (SERS) offer outstanding control and reproducibility of the gold nanopatterns and their related localized surface plasmon resonance, intracellular SERS experiments heavily rely on gold nanoparticles. These nanoparticles often result in varying and uncontrollable enhancement factors. Here we demonstrate the use of top-down gold-nanostructured microchips for intracellular sensing. We develop a tunable and reproducible fabrication scheme for these microchips. Furthermore we observe the intracellular uptake of these structures, and find no immediate influence on cell viability. Finally, we perform a proof-of-concept intracellular SERS experiment by the label-free detection of extraneous molecules. By bringing top-down SERS substrates to the intracellular world, we set an important step towards time-dependent and quantitative intracellular SERS

    Colloids-at-surfaces : physicochemical approaches for facilitating cell adhesion on hybrid hydrogels

    Get PDF
    Implementation of an effective focal cell adhesion represents a significant challenge because it requires to develop appropriate materials and processes together with assuring that cells would interact with it effectively. Various coatings are under development in the area of biomaterials including hydrogels and polymeric surfaces. Here, we analyse modification of the coatings by colloidal nano- and micro-particles, which effectively modify the surface of soft hydrogel materials, enhance and allow for adjustment of mechanical properties, and enable molecule release capabilities. A classification of such hybrid coatings is presented, where natural and synthetic polymeric coatings are overviewed. These organic coatings are modified by inorganic micro- and nano- particles. Various approaches to the design of such hybrid coatings are overviewed, while additional functionalities such as release of encapsulated biomolecules and enhancement of mechanical properties are highlighted. The developments in this area target effective cell growth, which is shown to be enhanced by the addition of colloidal particles

    Polycaprolactone-based, porous CaCO3 and Ag nanoparticle modified scaffolds as a SERS platform with molecule-specific adsorption

    Get PDF
    Surface-enhanced Raman scattering (SERS) is a high-performance technique allowing detection of extremely low concentrations of analytes. For such applications, fibrous polymeric matrices decorated with plasmonic metal nanostructures can be used as flexible SERS substrates for analysis of analytes in many application. In this study, a three-dimensional SERS substrate consisting of a CaCO3-mineralized electrospun (ES) polycaprolactone (PCL) fibrous matrix decorated with silver (Ag) nanoparticles is developed. Such modification of the fibrous substrate allows achieving a significant increase of the SERS signal amplification. Functionalization of fibers by porous CaCO3 (vaterite) and Ag nanoparticles provides an effective approach of selective adsorption of biomolecules and their precise detection by SERS. This new SERS substrate represents a promising biosensor platform with selectivity to low and high molecular weight molecules

    Classification of analytics, sensorics, and bioanalytics with polyelectrolyte multilayer capsules

    Get PDF
    Polyelectrolyte multilayer (PEM) capsules, constructed by LbL (layer-by-layer)-adsorbing polymers on sacrificial templates, have become important carriers due to multifunctionality of materials adsorbed on their surface or encapsulated into their interior. They have been also been used broadly used as analytical tools. Chronologically and traditionally, chemical analytics has been developed first, which has long been synonymous with all analytics. But it is not the only development. To the best of our knowledge, a summary of all advances including their classification is not available to date. Here, we classify analytics, sensorics, and biosensorics functionalities implemented with polyelectrolyte multilayer capsules and coated particles according to the respective stimuli and application areas. In this classification, three distinct categories are identified: (I) chemical analytics (pH; K+, Na+, and Pb2+ ion; oxygen; and hydrogen peroxide sensors and chemical sensing with surface-enhanced Raman scattering (SERS)); (II) physical sensorics (temperature, mechanical properties and forces, and osmotic pressure); and (III) biosensorics and bioanalytics (fluorescence, glucose, urea, and protease biosensing and theranostics). In addition to this classification, we discuss also principles of detection using the above-mentioned stimuli. These application areas are expected to grow further, but the classification provided here should help (a) to realize the wealth of already available analytical and bioanalytical tools developed with capsules using inputs of chemical, physical, and biological stimuli and (b) to position future developments in their respective fields according to employed stimuli and application areas

    Laser-assisted photoporation : fundamentals, technological advances and applications

    Get PDF
    Laser-assisted photoporation is a promising technique that is receiving increasing attention for the delivery of membrane impermeable nanoscopic substances into living cells. Photoporation is based on the generation of localized transient pores in the cell membrane using continuous or pulsed laser light. Increased membrane permeability can be achieved directly by focused laser light or in combination with sensitizing nanoparticles for higher throughput. Here, we provide a detailed account on the history and current state-of-the-art of photoporation as a physical nanomaterial delivery technique. We first introduce with a detailed explanation of the mechanisms responsible for cell membrane pore formation, following an overview of experimental procedures for realizing direct laser photoporation. Next, we review the second and most recent method of photoporation that combines laser light with sensitizing NPs. The different mechanisms of pore formation are discussed and an overview is given of the various types of sensitizing nanomaterials. Typical experimental setups to achieve nanoparticle-mediated photoporation are discussed as well. Finally, we discuss the biological and therapeutic applications enabled by photoporation and give our current view on this expanding research field and the challenges and opportunities that remain for the near future
    corecore